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Graphene in a strong magnetic field: Massless Dirac particles versus skyrmions
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We discuss models for massless Dirac fermions being subjected to a perpendicular magnetic field in spheri-
cal geometry. These models are analogs of Haldane’s spherical construction for massful charge carriers. The
single-particle states constructed here are easily implemented in existing numerical code for many-body prob-
lems in conventional quantum Hall systems. Moreover, the many-body states of fully filled sublevels in the
subspace of lowest Landau-level index are skyrmions with respect to the layer spin.
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I. INTRODUCTION

In the recent years, graphene has developed to one of
clearly most active directions of work in today’s both experi-
mental and theoretical condensed-matter physics.' Com-
pared to conventional two-dimensional electronic systems,
the peculiar properties of graphene mainly stem from its lin-
ear dispersion near the Fermi energy and the chiral nature of
electronic states entangling the momentum and sublattice de-
gree of freedom.>3 Among a plethora of interesting phenom-
ena, the quantum Hall effect occurring at anomalous (“half-
integer”) filling factors is one of the most spectacular
observations in this new type of material.*~% Other partially
related unusual features of graphene include a cyclotron
mass being proportional to the square root of the particle
density* and a nonequidistant Landau-level spectrum propor-
tional to the square root of the magnetic field.*”

In quantum Hall physics, the exact numerical treatment of
finite many-body systems has always been an important
source of theoretical evidence.!” A particularly convenient
model for such numerical simulations was given already 25
years ago by Haldane.!! In this construction, massful elec-
trons move on a spherical surface in a radial monopole mag-
netic field. This model has the advantage of lacking any sys-
tem edge (and therefore reducing finite-size effects in
numerical results). On the other hand, the mathematical
properties of the states in the lowest Landau level are par-
ticularly simple, enabling also substantial analytical
progress. Both aspects have made the Haldane sphere to a
widely used model in theoretical, in particular numerical de-
scriptions of quantum Hall systems; for some representative
references see Refs. 12-29. Moreover, most recently this
spherical model, which is explicitly constructed for massful
electrons in conventional two-dimensional systems, was also
applied to the situation of massless carriers in graphene.30-34
In particular, the authors of Ref. 32 state that “the analogous
solution for carriers with linear dispersion ... is not known
for the spherical geometry.” The purpose of this paper is
to introduce such models of massless charge carriers in
the spherical geometry. As we shall see below, they are
rather straightforwardly developed from the situation of
massful particles. A particular feature of these models is
many-body ground states having the features of skyrmions
known from conventional quantum Hall monolayers. Finally
we mention previous works by other authors on Dirac fermi-
ons coupled to gauge fields in spherical geometry inspired by
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fullerenes,37 i.e., another allotrope of carbon. Differently

from the models to be discussed here, these constructions do
not rely on angular-momentum operators and have therefore
also different spectra.

This paper is organized as follows. In Sec. II we review
the basic properties of the spherical model for massive
charge carriers in a perpendicular magnetic field. In Sec. III
we briefly recall elementary facts concerning planar
graphene in a perpendicular magnetic field before construct-
ing analogous models in spherical geometry. Here we also
discuss two-body and many-body states. We close with con-
clusions in Sec. IV.

II. SPHERICAL MODEL FOR MASSFUL
CHARGE CARRIERS

In Haldane’s spherical model for massful charge carriers
in a perpendicular magnetic field, electrons move on a
spherical surface of radius R which is penetrated by a radial
monopole magnetic field B=7%cS/eR?. Here >0 is the el-
ementary charge and 25 is the integer number of flux quanta
hc/e_through the surface,!’ i.e., the radius is given by R
={\S, where {=\fc/eB is the magnetic length. The single-
particle Hamiltonian reads

A2 1 A2

Ho= —— = ~a,—.
T oMR: T 2 ks

(1)

Here M is an effective mass, w=eB/Mc is the cyclotron
frequency, and the kinetic angular momentum reads, using
again standard notation,

&:;x(,ﬂffi’), )

¢

where the vector potential yields V xA=BQO and O=F/R.

The operator A has the elementary properties
A-Q=0-A=0, (3)

[AYAP] = ihe V(AT - £SQY). (4)

In particular, the components of A fail to fulfill proper
angular-momentum commutation relations and can therefore
not be considered as the generators of rotations. Instead, ro-
tations are generated by the angular-momentum operator
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L=A+4SQ (5)
fulfilling
[L% LP] = ihe*BLY, (6)
L-Q=Q-L=#S, (7)
[2= A2+ (hS)2. (8)

Thus, the eigenvalues of L2 are given by #%I(I+1) with [
=S+n and n€{0,1,2,...}, where n=0 corresponds to the
lowest Landau level. Note, however, that the spectrum of the
Hamiltonian (1) is not equidistant but grows quadratically
with n differently from the planar situation.

Let us choose the usual gauge A=(2S/eR)$ cot 9, where
U and ¢ are the usual polar coordinates and ¢ is the unit
vector in the azimuthal direction.'’!> Then eigenstates in the
lowest Landau level have a particularly simple structure

given by
2S+1( 28
S+m_,S—m
9 = 5 9 9
enlt0) =\ 4w€2s<5+m)” v ®)
where  u=cos(9/2)e'??, v=sin(9/2)e”®?, and m

e{-S,...5} is the eigenvalue of L¢/%.

We note that the gauge-invariant angular-momentum op-
erator (5) crucially depends on the magnetic flux and is not
identical to the gauge-dependent canonical angular-

momentum operator L.,=7X p. Moreover, due to relation
(8), one could alternatively define the Hamiltonian

1 12

HO = Eﬂ)cﬁ_s,

(10)

which differs from Eq. (1) just by a trivial constant.

III. MASSLESS DIRAC PARTICLES
IN SPHERICAL GEOMETRY

For a planar graphene sheet in a perpendicular magnetic
field, the single-particle states around one of one of the two
inequivalent corners of the first Brillouin zone are described
by?

H?lt)=v[(i)77xo"(+ 0] (11)

with #=p+eA/c and v=10% m/s. The Pauli matrices de-
scribe the sublattice or pseudospin degree of freedom, and
the Zeeman coupling to the physical electron spin has been
neglected. The double sign (*) (valley index) determines
which corner of the Brillouin zone is considered.’® These
two cases are, in the absence of a magnetic field, related by
time reversal® implemented by a complex conjugation, i.e.,
o” changes sign while o remains unaltered. Note that this
behavior is different from angular-momentum operator de-
scribing a proper spin and not a sublattice degree of freedom.
In what follows we shall concentrate on the case (+). Defin-
ing the usual bosonic operators
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1¢
a=Eg(7Tx+i7Ty), at=(a)* (12)

fulfilling [a,a*]=1, the Hamiltonian reads

h —~
H‘(Dl) = 7vv’2(a0_ +a*o”), (13)

where 0= =(0"*id”)/2. The well-known eigenstates® of the
Hamiltonian (13) are given by |0, 1) with energy £,=0 and,
for n>0,

n=)= = (m 1) % = 1,1)) (14)
\r’2

with energy &, = = (fiv/€)\2n. Here n is again the Landau-
level index and the arrows are obvious standard notation for
the sublattice spin states. In particular, Landau-level index
and (sublattice) spin are entangled in these eigenstates, a
feature that will be reproduced by the spherical models for
graphene in a magnetic field to be discussed now.

A. Spherical models

Let us now discuss models for massless Dirac particles on
a sphere penetrated by a radial monopole magnetic field, for
which we shall use the same gauge as stated before. Note
that the crucial step in constructing the spherical model for
massful carriers is to replace the linear momentum of the
usual planar Landau problem with an appropriately defined
angular momentum. This shall also be our guideline regard-
ing the case of massless Dirac fermions.

1. Single-particle Hamiltonians

Inspired by the expressions (1) and (10) we consider the
Hamiltonians

U - v -
Hioy= 2A - Fay=—=A - Fra (15)
(%) R (%) Vs (%)
and
’ v o~
H(+)=_/—L' T(+)- (16)

Here the operators 7(,) describing the sublattice degree of
freedom are again just given by the Pauli matrices, 7(,)=0,
while 7'(_> are the negatives of their complex conjugates,
7y=—(0)", in close analogy to the planar case (11). Note
that both sets of operators, although not referring to a proper
spin, fulfill the usual relations

[T?i),T(Bi)] =2i8aﬂ773/i)- (17)

This fact will chiefly facilitate the analysis of the Hamil-
tonian (16) in terms of elementary angular-momentum
theory. The treatment of the Hamiltonian (15), however, is

more complicated since the components of A do not fulfill an
angular-momentum algebra. Moreover, in the following we
shall again concentrate on the case (+). The case (—) can be
treated completely analogously and is just related via com-
plex conjugation.
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The two Hamiltonians given in Egs. (15) and (16) differ
by the radial contribution
, hv -= .
Hio =My =" NS0, (18)
which is, differently from expressions (1) and (10), not just a

trivial constant. In fact, one might argue that 7, should be
considered to be closer to the planar model of graphene since

the operator A in contrast to L does not have a radial com-
ponent. However, as we shall see shortly, when concentrating
on the subspace of lowest Landau-level index n=0, the so-
lutions of negative energy are simultaneous eigenstates of

L-6 and Q- (and therefore also A- &) at any systems size,
whereas the solutions of positive energy become such simul-
taneous eigenstates in the thermodynamic limit S— occ. Thus,
as far as the subspace of lowest Landau-level index is con-
cerned, the eigenstates of ;) and H(’ 1) are either identical at
any system size or become identical in the thermodynamic
limit, where the planar model of graphene is recovered. Let
us therefore first concentrate on the latter Hamiltonian.
Introducing a total angular momentum of the usual form

J=L+%G/2 one can rewrite the Hamiltonian (16) as

, v | - ho_\?
H(+):m|:J2—L2—<EO'> ] (19)

Moreover, j commutes with the Hamiltonian and admits to-
tal angular-momentum quantum numbers j=[/*1/2=S
+n*1/2. Thus, the spectrum of H, reads

, hv 1 _1
.=+ —F#= S+n+§+5. (20)

Let us again focus on the lowest Landau-level index n=0.
Using the well-known Clebsch-Gordon coefficients’® for
coupling an angular momentum of length S with a spin 1/2,
one can explicitly formulate the 25+2 eigenstates in the mul-
tiplet j=I+1/2,

S+1/2
Y (u,0) = \/—+ et w0)[1)
S+1/2
#\ T agr emnoll, @D

where m e {-S—1/2,...,5+1/2} is the eigenvalue of J*/#,
and the 28§ states with j=[—1/2 read

_ S+1/2-m
P(u,v) = = 4/ 2STQDm-uz(u,v)|T>
S+12+m
+1/ 2STGDmH/z(u,v)H) (22)

with me{-S+1/2,...,5-1/2}. Similarly to the planar
model of graphene, the sublattice spin and the conventional
orbital motion are entangled with each other.

Denoting (ﬂi(u,u):(ﬂm,i), the expectation values of

Q- are straightforwardly calculated as
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B (23)

7m,+) =
25 +2

~ Q- Glm,~)y=—1. (24)

Thus, the variance of (- within the states of lower energy
|m,-) is exactly zero, while for the states |m,+) one finds

7m, +))?
(25? _
T (25+2)

28 +1
(28 +2)*°

(25)

As a result, the eigenstates |m,—) of the Hamiltonian ’H(' 4 are
for any system size simultaneously also eigenstates of H,),
whereas the eigenstates |m,+) achieve this property in the
thermodynamic limit §— . In particular the energy e_ of
H) corresponding to &/ for n=0 is just e_ =—fv/€\S.

Moreover, replacing, as an approximation, the operator Q-G
with =1 one finds for the energy spectrum of

h 1 1
8+%i—vr<n+—1—>. (26)
B €y\S 2 2

This result should be seen in analogy to the conventional
spherical model (1). Here the energies increase quadratically
with the Landau-level index n, while the spectrum of the
underlying planar model is of course equidistant with ener-
gies proportional to n. In the case of graphene the energies
of the planar model are proportional to \n while in the
spherical model H(,, they increase with Vn n*=n. As seen
above, the approximation underlying Eq. (26) is exact for
both branches of the spectrum at n=0 and S—o°. It is an
interesting speculation whether it becomes also exact in the
thermodynamic limit if n # 0. The single-particle states given
above were also examined some time ago by Rezayi*’ in
circumstances of quantum Hall skyrmions, an analogy we
shall explore in some detail in Sec. IIT A 3.

2. Two-body states and interaction matrix elements

For the conventional spherical model for massful charge
carriers described in Sec. II, a particularly simple form for
two-body states of given total angular momentum can be
devised.'"'> Using these expressions, matrix elements of ro-
tationally invariant interactions are conveniently parameter-
ized in terms of pseudopotentials.'?

In the present case of massless particles, the pseudospin
degree of freedom adds to the complexity of the two-body
problem, and we have not found a similarly concise expres-
sion for states with good quantum numbers of the total an-
gular momentum. However, what is usually needed in nu-
merical implementations of interaction Hamiltonians are
matrix elements between tensor products of single-particle
states which are related to pseudopotentials via Clebsch-
Gordan coefficients.!> Now, using the expansions (21) and
(22) it is straightforward to express such interaction matrix
elements of states of massless particles considered here in
terms of those of massful objects given by Eq. (9). Thus,
regarding numerical implementations of interaction opera-
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tors, it is an easy and straightforward task to adjust an exist-
ing code for the conventional spherical model to the single-
particle states of massless carriers.

3. Many-body states

We now discuss many-body states of fully filled energetic
sublevels (20) of lowest Landau-level index n=0. Let |¥*)
denote the Slater determinant of all 2S+1 * 1 single-particle
states given in Egs. (21) and (22), respectively. Both many-
body states are singlets of the total angular momentum. For
the particle density one naturally finds

. . e e 28+1 =1
n=(r= <‘I”|§ 8(r—r)|¥*)= Tardls (27)
while the pseudospin density is given by
sin ¥ cos ¢
o= (r) = <\Iff|§ GO =RIWF) =+~ sin Ising |,
cos ¥
(28)

in accordance with Egs. (23) and (24). We see that these
pseudospin densities form the typical “hedgehog” structures
known from skyrmions.!®!7 However, differently from skyr-
mions in conventional quantum Hall monolayers, the physi-
cal electron spin as well as the valley spin is polarized here
while the sublattice spin is forming a topologically nontrivial
structure. In fact, the single-particle wave functions (21) and
(22) along with the many-body states |¥=) were discussed
already in Ref. 40 as models for (electron-spin) skyrmions.
Here we have identified formally the same skyrmion states
(with respect to the sublattice spin) as ground states of fully
filled Landau levels of massless Dirac particles. We stress the
fact that the Hilbert spaces spanned by the single-particle
states (21) and (22) for massless Dirac particles are different
from the Hilbert space spanned by the single-particle wave
functions (9) for conventional massful carriers. In several
recent publications, however, the Landau levels of graphene
were modeled by the conventional wave functions for mas-
sive particles. 3034

Finally, in order to evaluate interaction terms within the
many-body states |¥'*) it is useful to consider the pair dis-
tribution function

g5 (|7 = 7l = (WF| X 87, = 7) 87, — 7)), (29)

i#j
Here we obtain
oy @5+27 [ (25) ( P )25—1
r)= - -
§ @me28)?| T (25+2)7\ 26228
45+2 (1 r )25 (30)
(25 +2)? 20228

and
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(25)2 ( 2 )25—1}
(477625)2{1_ 1= 5s ' (3D

From these expressions the ground-state energies for arbi-
trary two-body interactions can be evaluated by integration.
In particular, for Coulomb interaction we find

g (=

e? 1 241 45 +2
e ———=— |5+ , (32)
el \/s (45) 485+ 1
28
2 1 245—1
] (33)
el \/s <4S)
28

Here € is the dielectric constant of the host material, and we
have as usual assumed that the direct (Hartree) contribution
to the ground-state energy is cancelled against a neutralizing
background. Result (33) agrees with the one given in Ref.
40, while Eq. (32) differs in detail from statements made
there by a contribution which, however, vanishes in the ther-
modynamic limit. If the states |W=) are interpreted as
charged excitations of a conventional quantum Hall ground
state at a filling factor of unity, their energies should be com-
pared with conventional ground-state energy given by?®

e s <4S+2> '
25+ 1

To provide a meaningful comparison,'” one also has to take

into account that the particle number in the excited states
|W=) differs from the conventional ground state by = 1. Then
one finds for the excitation gap in the thermodynamic limit

S—
21 |
E e——\/j, 35
T eta N2 (35)

in accordance again with Ref. 40, which is exactly the result
predicted by field-theoretical considerations.!” Moreover, in
Ref. 40 it was also found numerically that the state |¥'*) has
a vanishing variance for Coulomb interaction operator in the
thermodynamic limit; i.e., this state becomes an eigenstate of
the interaction operator in the limit of an infinite system.
This surprising result was also reported for other types of
long-range interactions.*’

L 25+1=*1
25 +1

IV. CONCLUSIONS AND OUTLOOK

We have introduced spherical models for the massless
Dirac charge carriers of graphene being subjected to a per-
pendicular magnetic field. The Hamiltonians (15) and (16)
presented here are analogs of Haldane’s spherical construc-
tion for massful charge carriers. While the first Hamiltonian
(15) is arguably closer to the planar model of graphene, the
latter one (16) can be analyzed easily by elementary angular-
momentum theory. Both Hamiltonians differ by a nontrivial
operator. However, in the subspace of lowest Landau-level
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index n=0 the eigenstates of the single-particle Hamiltonian
(16) become also eigenstates of Eq. (15). The latter result
holds for the states of positive energy in the thermodynamic
limit, while for the states of negative energy this statement is
true at arbitrary system size. In particular, the Hilbert spaces
spanned by the single-particle eigenstates of the Hamilto-
nians introduced here are different from the Hilbert space
spanned by the single-particle wave functions for conven-
tional massful carriers. It is a very interesting question for
future work, whether recently reported results of numerical
studies of quantum Hall physics in graphene using conven-
tional wave functions for massive particles®** are possibly
altered if single-particle states for massless charge carriers
are used. Indeed, the single-particle states constructed here
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are easily implemented in existing numerical code for many-
body problems in conventional quantum Hall systems. Fi-
nally, the many-body states of fully filled sublevels in the
subspace of lowest Landau-level index are skyrmions with
respect to the sublattice spin.
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